Aromatic nitro compounds

Ref. books:

- 1. A text book of Organic Chemistry - B. S. Bahl and Arun Bahl
- 2. A text book of Organic Chemistry - K. S. Tewari, S. N. Mherotra

Background

- ❖ The simplest aromatic nitro compound, nitrobenzene, also known as nitrobenzol, molecular formula $C_6H_5NO_2$.
- ❖ Often highly explosive, especially when the compound contains more than one nitro group.
- One of the most common explosophores (functional group that makes a compound explosive) used globally.
- ❖ Trinitrotoluene, best known as a useful explosive material with convenient handling properties.

Nitro group structure (-NO₂)

$$\begin{bmatrix} -\stackrel{+}{N} & O \\ -\stackrel{+}{N} & O \end{bmatrix} \text{ or } -\stackrel{+}{N} & O \\ O \end{bmatrix} \ominus$$

- Nitrocompounds are the derivatives of hydrocarbons which contain one or several groups (-NO2) in their molecule.
- ❖ In modern perspective, aromatic nitro compounds are molecules in which -NO₂ group is directly bonded to an aromatic ring.

nitrobenzene

phenylnitromethane

Nomenclature

- ❖ Name the longest and continuous carbon chain
- ❖ Name the -NO₂ compound as a -nitro substituent

Aliphatic Nitro

$$CH_3-NO_2$$

Nitromethane

$$O_2N$$
 NO_2

1.3.5-trinitrobenzene

Nitrobenzene

 NO_2

CH2-CH2-NO2 1-nitro-2-phenylethane 1-nitronaphthalene

1

Preparation

Direct nitration

Nitrobenzene is prepared by nitration of benzene with a mixture of concentrated sulfuric acid, water, and nitric acid, called "mixed acid."

Oxidation of arylamines

Arylamines undergo oxidation with trifluoroperacetic acid or hydrogen peroxide in acetic acid to give the corresponding aromatic nitro compounds.

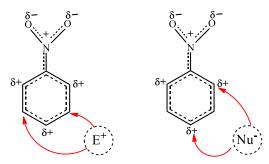
Mechanism of nitration

- The reaction pathway entails formation of an adduct between the Lewis acidic nitronium ion, NO₂+, and benzene.
- The nitronium ion is generated in situ via the reaction of nitric acid and an acidic dehydration agent, typically sulfuric acid.

Physical properties of aromatic nitrocompounds

- Nitrobenzene is a water-insoluble oil which exhibits a pale yellow to yellow-brown coloration in liquid form (at RT and P) with an almond-like odour.
- When frozen, it appears as a greenish-yellow crystal. Although occasionally used as a flavoring or perfume additive.
- Nitrobenzene is highly toxic in large quantities and is mainly produced as a precursor to aniline.
- In the laboratory, it is occasionally used as a solvent, especially for electrophilic reagents.

Chemical properties of aromatic nitro compounds


Resonance hybrid structure of atomatic nitro compounds

Resonance hybrid

Chemical properties

- C-N bond in hybrid has partial double bond character, -NO₂ group is firmly bonded to benzene ring.
- ❖ Nitro group (-NO₂) cannot ordinarily be replaced by other atoms or groups.
- The benzene ring is deactivated to electrophile (E+) and activated to nucleophile (Nu-).

Chemical properties

- Electrophilic substitution occurs with difficulty at relatively election-rich m-position.
- Nucleophilic substitution occurs at the o-and p-positions bearing positive charge.

Reactions of nitro compounds

Reactions involving -NO₂ group

Reduction of nitro compounds

Aromatic nitro compounds give a variety of products depending on the reagent and conditions (acid, neutral or alkaline medium) used.

$$\begin{array}{cccc} C_6H_5NO & \longrightarrow & C_6H_5NHOH & \longrightarrow & C_6H_5NH_2 \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & &$$

Reactions of nitro compounds

Reduction in acidic medium

(i) By metal in acidic solutions: metals(Fe, Sn and Zn) and HCl are used for reducing a nitro group to an amino group.

$$NO_2$$
 Sn
 HCl

Catalytic reduction

❖ The reduction of -NO₂ to -NH₂ can also be accomplished by catalytic hydrogenation (H₂ in presence of Ni or Pt, or Pd/C.

$$NO_2$$
 $H_2/Pd-C$
ethanol

Selective reduction

One nitro group can be reduced without affecting the second group on benzene ring using ammonium sulphide or sodium hydrosulphide (NaSH).

$$\begin{array}{c}
NO_2 \\
NO_2
\end{array}$$

$$\begin{array}{c}
NH_2 \\
NO_2
\end{array}$$

Reduction in neutral medium

(iii) Reduction in neutral medium: zinc dust and ammonium chloride convert nitro benzene to corresponding hydroxylamine.

$$\begin{array}{c|c} NO_2 & NHOH \\ \hline & Zn \, / \, NH_4Cl & + \, ZnO \\ \hline & H_2O & N-phenylhydroxylamine \\ \end{array}$$

Reduction in alkaline medium

On reduction, nitrobenzene forms the mono molecular intermediate products nitrosobenzene and phenylhydroxylamine. In alkaline medium, these undergo bimolecular condensation reactions.

$$\begin{array}{c} C_6H_5NO \\ C_6H_5NHOH \end{array} \longrightarrow \begin{array}{c} C_6H_5-NO \\ \parallel \\ C_6H_5-N \\ \\ Azoxybenzene \end{array} \longrightarrow \begin{array}{c} C_6H_5-N \\ \parallel \\ C_6H_5-N \\ \\ Azobenzene \end{array} \longrightarrow \begin{array}{c} C_6H_5-NH \\ \parallel \\ C_6H_5-NH \\ \\ Hydrazobenzene \end{array}$$

Reduction with LiAIH₄

Aromatic nitro-comopunds on reduction with LiAlH₄ give azo compounds.

Reduction in alkaline medium

Forms different products depending on reducing reagent.

Reductive removal of nitro group

Nitro group can be removed from aromatic ring via reduction to amine followed by deoxidization with HNO₂ and then reductive removal of the diazonium group using sodium borohydride or hypo phosphorus acid/Cu+ mixture.

$$\begin{array}{c|c} NO_2 & NH_2 & N_2Cl \\ \hline & NaNO_2 + HCl & \\ \hline & H_3PO_2 & CuCl \\ \hline \end{array}$$

Nucleophilic substitution

The ortho and para positions of nitrobenzene are attacked by nucleophiles relatively easily. Thus when fused with KOH, nitrobenzene gives o-nitrophenol through necleophilic attack of OH- on the ring.

If a second -NO₂ group is present on the benzene ring of nitrobenzene in the ortho or para position, it undergoes nucleophilic displacement.

$$NO_2$$
 OH $+$ aq. KOH $+$ KNO_3

Electrophilic substitution

Nitration: The nitro group strongly deactivates the benzene ring towards electrophilic substitution.

Required strong conditions.

Preparation of o- or p-dinitrobenzene from nitrobenzene

$$\begin{array}{c|c} NO_2 & NH_2 & NHCOCH_3 \\ \hline & Sn/HCl & CH_3COCl \\ \hline & [H] & -HCl & \end{array}$$

o- and p-nitro acetanilide are separated

$$\begin{array}{c|c}
NHCOCH_3 & NH_2 \\
\hline
 & [H_2O] & CF_3CO_3H \\
NO_2 & NO_2
\end{array}$$

$$\begin{array}{c|c} NHCOCH_3 & NH_2 & NO_2 \\ \hline NO_2 & \hline NO_2 & \hline \\ \hline [H_2O] & \hline \end{array}$$

Preparation of m-nitrotoluene

Direct nitration of amine yields some m-nitroaniline

$$\begin{array}{c|c}
 & \text{NH}_2 & \text{NHONO}_2 \\
\hline
 & \text{HNO}_3 & \text{HNO}_3 \\
\hline
 & \text{H}_2\text{SO}_4
\end{array}$$

$$\begin{array}{c|c}
 & \text{HNO}_3 \\
\hline
 & \text{H}_2\text{SO}_4
\end{array}$$

$$\begin{array}{c|c}
 & \text{NH}_2 \\
\hline
 & \text{NH}_2 \\
\hline
 & \text{NO}_2
\end{array}$$

Electrophilic substitution

Halogenation: By halogenation nitrobenzene gives m-bromo-nitrobenzene.

$$Br_2$$
 Br_2
 Br_2
 Br_3

Preparation of o- or p-bromo-nitrobenzene from nitrobenzene

o- and p-nitro acetanilide are separated

$$\begin{array}{c|c} NHCOCH_3 & NH_2 \\ \hline & [H_2O] & NO_2 \\ \hline & NO_2 & NO_2 \\ \hline & NO_2 & NO_2 \\ \hline & NO_2 & NO_2 \\ \hline \\ & NO_2 & NO_2 \\ \hline \end{array}$$

Electrophilic substitution

Sulphonation: By sulphonation nitrobenzene yields m-nitro benzenesulphonic acid. For sulphonation fumed sulfuric acid is used

$$NO_2$$
 H_2SO_4
 SO_3

Friedel-Carft alkylation

$$NO_2$$

$$RX$$
AlCl₃ No reaction

Trinitrobenzene (TNB), C₆H₅(NO₂)₃

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline F. HNO_3 & O_2N & NO_2 \\ \hline \hline F. H_2SO_4 & NO_2 & NO_2 \\ \hline O_2N & NO_2 & O_2N & NO_2 \\ \hline \hline NO_2 & Soda lime / \Delta & O_2N & NO_2 \\ \hline NO_2 & NO_2 & NO_2 & NO_2 \\ \hline \end{array}$$

Properties and uses of trinitrobenzene (TNB)

- It is a colorless solid.
- Melting point 122°C.
- It is more powerful explosive than TNT.
- Because of the difficulty in its preparation, it is not used as explosive.
- It forms well defined crystalline compounds with phenol, hydrocarbons, etc.

Trinitrotoluene (TNT)

Properties and uses of trinitrotoluene (TNT)

- It is a pale yellow crystalline solid.
- ❖ Melting point 81°C.
- It is used as an explosive in shells, bombs and torpedoes under the name 'trotyl'
- ❖ 'Amatol' (contains 80% ammonium nitrate), is used in mining, especially coal-mining.
- 'Ammonal' (contains 47% aluminium nitrate, 22%, aluminium, 30% TNT, 1% charcoal) used for outdoor blasting work